Algorithm for Power Minimization in Scan Sequential Circuits

نویسنده

  • Sukhwinder Singh
چکیده

1 ALGORITHM FOR POWER MINIMIZATION IN SCAN SEQUENTIAL CIRCUITS 1Harpreet Singh, 2Dr. Sukhwinder Singh 1M.E. (VLSI DESIGN), PEC University of Technology, Chandigarh. 2Professor, PEC University of Technology, Chandigarh Email: [email protected] . Abstract— The paper describes a An ATPG technique is proposed that reduces heat dissipation during testing of sequential circuits that have full-scan. The technique increases the correlation between successive states, during shifting in test vectors and shifting out test responses by reducing spurious transitions during test application. The reduction is achieved by freezing the primary input part of the test vector until the smallest transition count is obtained which leads to lower power dissipation. The paper presents a new algorithm which determines the primary input change time, such that maximum saving in transition count is achieved with respect to a given test vector and scan latch order. It is shown how combining the proposed technique with the recently reported scan latch and test vector ordering yields further reductions in power dissipation during test application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Capacitor Allocation in Radial Distribution Networks for Annual Costs Minimization Using Hybrid PSO and Sequential Power Loss Index Based Method

In the most recent heuristic methods, the high potential buses for capacitor placement are initially identified and ranked using loss sensitivity factors (LSFs) or power loss index (PLI). These factors or indices help to reduce the search space of the optimization procedure, but they may not always indicate the appropriate placement of capacitors. This paper proposes an efficient approach for t...

متن کامل

Low Power March Memory Test Algorithm for Static Random Access Memories (TECHNICAL NOTE)

Memories are most important building blocks in many digital systems. As the Integrated Circuits requirements are growing, the test circuitry must grow as well. There is a need for more efficient test techniques with low power and high speed. Many Memory Built in Self-Test techniques have been proposed to test memories. Compared with combinational and sequential circuits memory testing utilizes ...

متن کامل

Multiple Scan Chains for Power Minimization during Test Application in Sequential Circuits

This paper presents a new technique for power minimization during test application in sequential circuits using multiple scan chains. The technique is based on a new design for test (DFT) architecture and a novel test application strategy which reduces spurious transitions in the circuit under test. To facilitate the reduction of spurious transitions, the proposed DFT architecture is based on c...

متن کامل

Performance Analysis of Reversible Sequential Circuits Based on Carbon NanoTube Field Effect Transistors (CNTFETs)

This study presents the importance of reversible logic in designing of high performance and low power consumption digital circuits. In our research, the various forms of sequential reversible circuits such as D, T, SR and JK flip-flops are investigated based on carbon nanotube field-effect transistors. All reversible flip-flops are simulated in two voltages, 0.3 and 0.5 Volt. Our results show t...

متن کامل

Low Dropout Based Noise Minimization of Active Mode Power Gated Circuit

Power gating technique reduces leakage power in the circuit. However, power gating leads to large voltage fluctuation on the power rail during power gating mode to active mode due to the package inductance in the Printed Circuit Board. This voltage fluctuation may cause unwanted transitions in neighboring circuits. In this work, a power gating architecture is developed for minimizing power in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014